
Database-to-Ontology Mapping Generation

for Semantic Interoperability
Raji Ghawi
Laboratory LE2I

University of Burgundy
21000 Dijon, France

raji.ghawi@u-bourgogne.fr

Nadine Cullot
Laboratory LE2I

University of Burgundy
21000 Dijon, France

nadine.cullot@u-bourgogne.fr

ABSTRACT

In order to achieve efficient interoperability of information

systems, ontologies play an important role in resolving semantic

heterogeneity. We propose a general interoperability architecture

that uses ontologies for explicit description of the semantics of

information sources, and web services to facilitate the

communication between the different components of the

architecture. It consists of 1) data provider services for mapping

information sources to local source ontologies, 2) a knowledge

base for representing reference domain ontology, and 3) several

web services for encapsulating the different functionalities of the

architecture. In this paper, we focus on a component of the

architecture which is a tool, called DB2OWL, that automatically

generates ontologies from database schemas as well as mappings

that relate the ontologies to the information sources. The mapping

process starts by detecting particular cases for conceptual

elements in the database and accordingly converts database

components to the corresponding ontology components. A

prototype of DB2OWL tool is implemented to create OWL

ontology from relational database.

1. INTRODUCTION AND MOTIVATION
In order to achieve an efficient interoperability between

heterogeneous information systems, many solutions have been

proposed. Particularly, ontologies play an important role in

resolving semantic heterogeneity by providing a shared

comprehension of a given domain of interest. An ontology

formally defines different concepts of a domain and relationships

between these concepts. Wache et al. in [17] give an excellent
survey on ontology-based information integration systems.

According to the way of exploiting ontologies in information

integration, they distinguish three main ontology based

approaches: single, multiple and hybrid. Single ontology

approaches use one global ontology to which all information

sources are linked by relations expressed via mappings that

identify the correspondence between each information source and

the ontology. In multiple ontologies approaches, each information

source is described by its own ontology and inter-ontology

mappings are used to express the relationships between the

ontologies. The hybrid approaches combine the two previous

approaches. Each information source has its own ontology and the

semantic of the domain of interest as a whole is described by a

global reference ontology. In these approaches there are two types

of mappings: mappings between an information source and its

local ontology and mappings between local ontologies and the

global ontology.

In addition to ontologies, web services are increasingly used to

support the interoperability between different applications and

clients over the web using recently developed internet oriented

data models, standard and protocols such SOAP, WSDL, XML

etc.. Web services guarantee the independence of an application

from any particular platform or implementation. We propose a

cooperation architecture that uses ontologies to represent the

semantic of information sources and web services to facilitate the

communication between its different parts. Our architecture

belongs to the hybrid ontology approach, using a local ontology

for each information source and a global ontology as a reference

for the local ontologies. The advantage of wrapping each

information source to a local ontology is to allow the development

of source ontology independently of other sources or ontologies.

Hence, the integration task can be simplified and the addition and

removal of sources can be easily supported. Most of the

architecture components are encapsulated in web services aimed

at performing specific tasks, like mapping, querying and

visualization web services.

In our architecture, information sources may contain different

types of data structures: data may be structured as databases,

semi-structured as XML documents, and/or non-structured as web

pages or other type of documents. However, all of these sources

must be mapped to a local ontology which will express the

semantic of information sources. In this paper, we focus only on

the mapping between databases and the local ontology.

Currently there are many approaches and tools to deal with

database to ontology mapping. They can be classified into two

main categories: approaches for creating a new ontology from a

database and approaches for mapping a database to an already

existing ontology. For our architecture, we suppose that the local

ontology does not exist and may be created from the information

source. We have developed a tool called DB2OWL to create

ontology from a relational database. It looks for some particular

cases of database tables and according to them it determines

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct commercial

advantage, the VLDB copyright notice and the title of the publication and its

date appear, and notice is given that copying is by permission of the Very

Large Database Endowment. To copy otherwise, or to republish, to post on

servers or to redistribute to lists, requires a fee and/or special permissions

from the publisher, ACM.

VLDB ’07, September 23-28, 2007, Vienna, Austria.

Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

which ontology component is created from which database

component. This tool also generates a mapping document that

preserves the set of transformations between the database and

ontology's components performed during the creation phase. This

paper is organized as follows. In section 2, we present different

database to ontology mapping approaches. We give in section 3

an overview of a general cooperation architecture. In section 4, we

introduce the DB2OWL tool, list some notations, illustrate the

several particular table cases and present the mapping process.

Section 5 presents some related works and concludes with some

remarks and future work.

2. BACKGROUND
Mapping is a critical operation in many application domains, such

as semantic web, schema or ontology integration, data integration,

data warehouses, e-commerce, etc. We can distinguish three types

of mapping : 1) schema mapping, 2) ontology mapping, and 3)

database-to-ontology mapping, on which we focus in this paper.

1. Schema Mapping : Mappings are established between the

schema of the individual databases. This process takes two

schemas as input and produces a mapping between elements

of the two schemas that correspond to each other. Some

interesting works in this area are the works of Fuxman et al.

 [7] and Miller et al. [10]. We refer also to [14] as a survey on
existing approaches.

2. Ontology Mapping : The main purpose of this process is to

relate the vocabulary of two ontologies that share the same

domain of discourse. Ontology mapping is somewhat similar

to database schema matching, but it has many particularities

due to the structural and conceptual differences between

ontologies and databases. Kalfoglou et al. gives in [8] an
excellent survey on ontology mapping.

3. Database-to-Ontology Mapping : This is the process whereby

a database and an ontology are semantically related at a

conceptual level, i.e. correspondences are established

between the database components and the ontology

components.

The database-to-ontology approaches may be classified into two

main categories as follows.

2.1 Creating an ontology from a database
These approaches create an ontology model from a relational

database model and migrates the contents of the database to the

generated ontology. The mappings here are simply the

correspondences between each created ontological component

(concept, property, etc.) and its original database component

(table, column, etc.). In these approaches, the database model and

the generated ontology are very similar. Mappings are quite direct

and complex mapping situations do not usually appear. The

creation of ontology structure may be straightforward, involving

direct transformations of database tables to ontology concepts and

columns into properties. This type of direct mapping is not

sufficient for expressing the full semantics of the database

domain. The creation of ontology structure may require the

discovery of additional semantic relations between database

components (like the referential constraints) and take them into

account while constructing ontology concepts and relations

between them.

2.2 Mapping a database to an existing

ontology
In these approaches, it is considered that an ontology and a legacy

database already exist. The goal is to create mapping between

them, and/or populate the ontology by the database contents.

Mappings here are more complex than those in the previous case

because different levels of overlap between the database domain

and the ontology’s one can be found, and those domains do not

always coincide because the modeling criteria used for designing

databases are different from those used for designing ontology

models [2].

Both mapping approaches above include two processes: (1)

mapping definition i.e. the transformation of database schema into

ontology structure, and (2) data migration i.e. the migration of

database contents into ontology instances. The migration of

database instances into ontological instances (individuals), also

called ontology population, may be done in two ways [13] : either
as a batch process by dumping all the database instances to the

ontology repository, or as a query driven process by transforming

only the database instances that are the response to a given query,

i.e. only the data needed to answer the user’s query are retrieved

from the sources.

3. GENERAL ARCHITECTURE
In this section, we give an overview of our interoperability

architecture and its main components. It is a cooperation system

between several information sources and is aimed at answering

user queries on these sources. User queries are submitted only on

the reference ontology using the query web service. Thus, users

can query heterogeneous and distributed information sources

simultaneously and combine the obtained results in order to get

information that may not be available directly, i.e. the user has the

illusion that he queries a unique source. In order to bridge the gap

of heterogeneity between information sources, ontologies are used

to describe the semantics of the information sources and to make

their contents explicit. The ontologies have to be linked to actual

information in order to support the integration process. This is

done via mappings between each information source and its

ontology. For each incorporated information source, a local

ontology is generated to describe its semantics as well as the

resulting mappings between the source and the local ontology.

Then the local ontologies are mapped to a global ontology using

the mapping web service. The global ontology describes the

semantics of the whole domain of interest. User’s queries are

submitted to the query web service that analyses the queries,

decompose them into sub-queries which are redelivered to the

Figure 1. Classification of database-to-ontology mapping

approaches.

relevant data provider services. As shown in figure 2, the

cooperation architecture consists of the following components.

3.1 Knowledge Base
This is the main component of the architecture. It contains the

reference ontology, a mapping directory, and a toolbox. The

reference ontology describes a specified knowledge domain. It

represents the global model for local ontology models and is

supposed to cover all the local domains, i.e. each concept, role

and attribute in any local ontology has a corresponding concept,

role and attribute in the reference ontology. The mapping

directory contains information about the mappings between the

reference ontology and the local ones. The mapping itself is stored

in the data provider service. The directory only associates each

concept in the referential ontology with a list of local ontologies

which are linked to this concept. The toolbox contains tools that

are used by the mapping web service to estimate the similarity

between ontologies components.

3.2 Data Provider Service
It encapsulates an information source incorporated in the

cooperation system. In addition to the information source, the data

provider service contains a local ontology representing the

semantics of the information source, as well as two types of

mappings: information source to local ontology mapping, and

local ontology to reference ontology mapping, as described in

figure 3. In this paper, we will only deal with information source

based on relational databases. The automatic mapping of other

models to ontology is beyond the scope of this paper.

The local ontology is automatically generated from the database

using the DB2OWL tool which will be presented in details in the

rest of this paper. This tool also generates a description of the

mapping between database and the resulting local ontology. Our

objective is to keep the instances separated from the structure of

their ontology. Thus, the generated ontology will contain only the

classes and properties but not the instances, which will stay at the

database and be retrieved and translated as needed in response to

user queries. A data provider service also plays the role of

wrapper that translates queries over its local ontology into SQL

queries over its data source and reformulates the results in terms

of the local ontology.

3.3 Mapping Service
This service is used to connect the local ontology to the reference

ontology. It compares the two ontologies using the methods

defined in the knowledge base toolbox, and produces inter-

ontology mappings which will be stored in the appropriate data

provider service, as well as an up-to-date version of the mappings

directory in the knowledge base.

In general, a mapping web service estimates similarity between

the components (concepts and roles) of two ontologies, using

structural and semantic (graph based and information value based)

methods. The similarity estimating process is out of the scope of

this paper.

3.4 Query Service
When a query is submitted to the system, it is analyzed by this

service and decomposed into a set of modular queries. Then using

the mapping directory in the knowledge base, the query web

service redirects the single queries to the suitable data provider

services.

In fact, queries are expressed in SPARQL language [12],
therefore, a query is composed of a set of triple patterns. Each

triple pattern corresponds to a concept or a property in the

reference ontology. For each local ontology, a sub-query is

established by selecting from the global query the triple patterns

that are relevant to this local ontology (according to the mapping

directory). Each sub-query is then redelivered to the appropriate

data provider service. In other words, each data provider service

will receive only a subset of query triple patterns which are

covered by its local ontology.

When an SPARQL query is received by a data provider service, it

is translated to an SQL query using the mappings between the

database and the local ontology. The SQL query is executed in the

database and its result is encapsulated as an SPARQL response

and returned to the query web service. The query web service then

collects the responses returned from data provider services and

recomposes them in one coherent response which will be sent to

the visualization web service.

3.5 Visualization Service
The final response will be redirected to the visualization web

service which is responsible for presenting the query result in a

suitable way. The visualization process is out of the scope of this

paper. The following section introduces our approach DB2OWL

as well as the mapping process which it uses.

Figure 3. The architecture of the data provider service.

Figure 2. Global architecture of our cooperation system.

4. DB2OWL MODULE
The goal of the DB2OWL module is to automatically create a new

ontology from a relational database. In our architecture,

DB2OWL is exploited by the data provider service to generate a

local ontology for each data source (relational database).

Currently, DB2OWL is not intended to map several databases to

one ontology. However, reconciling different data sources is

performed by mapping their local ontologies to the reference

ontology. This task is carried out by the mapping web service.

The created ontology is described in OWL-DL language1, a W3C

recommendation for publishing and sharing ontologies on the

web. OWL-DL is based on Description Logics [1], a family of

knowledge representation languages, which is characterized by its

expressiveness and reasoning power. The mapping process starts

by detecting some particular cases for tables in the database

schema. According to these cases, each database component

(table, column, constraint) is then converted to a corresponding

ontology component (class, property, relation). The set of

correspondences between database components and ontology

components is conserved as the mapping result to be used later. In

the following subsections, we introduce the notation used to

describe the database metadata and explain the table cases which

must be detected in the database in order to exploit them

throughout our mapping process. The mapping process itself is

then introduced, and finally we illustrate the mechanism of

mapping generation during the process.

4.1 Notations
Let DB be a database and let T be a table of DB, we note col(T),

P(T) and F(T) the sets of columns, primary keys and foreign keys

of table T respectively. We note also PF(T), P_(T), _F(T), __(T)

the set of columns which are respectively both primary and

foreign keys, primary but not foreign keys, foreign but not

primary keys, and not primary nor foreign keys. The sets PF(T),

P_(T), _F(T), __(T) are a partition of col(T).

A referential integrity constraint is represented by the quadruplet

ric (T1, A1, T2, A2) where T1, T2 are tables and A1 ⊆ col(T1) , A2 ⊆

col(T2) are set of columns of the tables T1 and T2 such that each

element of A1 is a foreign key referenced by an element of A2 i.e.

∀αi ∈ A1, ∃ βi ∈ A2, αi is referenced by βi , so A1 ⊆ F(T1) and A2

⊆ P(T2).

Let RIC be the set of all explicit referential constraints in a DB, we

define additional functions for a referential integrity constraint:

the local table (LT) and the local attributes (LA) functions which

respectively give the reference table (the owner) and attributes of

the constraint. The referenced table (RT) and referenced attributes

(RA) functions that respectively give the table and the attributes

referenced by the constraint. So LT(ric) = T1 , LA(ric) = A1 ,

RT(ric) = T2 , and RA(ric) = A2 . For a table T, we also define the

function RIC(T) which returns the set of referential integrities

whose local table is T, i.e. RIC: DB → P(RIC) , RIC(T) = { ric(T1,

A1, T2, A2) ∈ RIC , LT(ric) = T}.

4.2 Different table cases
The mapping process used in our approach depends on particular

database table cases that are taken in account during the ontology

1 http://www.w3.org/TR/owl-features/.

creation. These cases will be illustrated using the following

example database, which represents a library database.

AUTHOR (authorNo, name)

REFERENCE (refNo, title, year)

PUBLISHER (publisherNo, pubName, pubAddress, pubTelNo)

BOOK (refNo, ISBN, publisherNo)

JOURNALARTICLE (refNo, journal)

REFAUTHOR (refNo, authorNo)

REFCOPY(catalogNo, shelf, refNo, dateInStock)

4.2.1 Case 1
When a table T is used only to relate two other tables T1, T2 in a

many-to-many relationship, it can be divided into two disjoint

subsets of columns A1, A2, each participating in a referential

constraint with T1 and T2 respectively:

RIC(T) = {ric1, ric2} : ric1 (T, A1, T1, P(T1)), ric2 (T, A2, T2,

P(T2))

Therefore all T columns are foreign keys and they are primaries as

well because their combination uniquely defines the rows of T,

i.e. col(T) = F(T) = P(T), so: col(T) = PF(T) .

Thus, the necessary and sufficient condition for a table T to be in

case 1 is: col(T) = PF(T) and |RIC(T)| = 2 .

Example: Let us consider the table « REFAUTHOR » that

consists of two columns {refNo , authorNo }. We note that P(T) =

{refNo , authorNo } and F(T) = {refNo , authorNo }, so PF(T) =

{refNo , authorNo } = col(T). In addition, RIC(T) = {ric1, ric2}

where: ric1 (REFAUTHOR, {refN}, REFERENCE {refNo}) and

ric2 (REFAUTHOR, {authorNo} , AUTHOR {authorNo}) so

|RIC(T)| = 2, therefore REFAUTHOR is in case 1.

4.2.2 Case 2
This case occurs when a table T is related to another table T1 by a

referential integrity constraint whose local attributes are also

primary keys, i.e. ∃ ric ∈ RIC(T), LA(ric) = P(T) , in other words:

ric (T, P(T), T1, P(T1)). In this case all the primary keys of T are

foreign keys because they participate in a referential integrity

constraint: P_(T) = ∅.

Thus, the necessary and sufficient condition for a table T to be in

case 2 is: ∃ ric ∈ RIC(T) , LA(ric) = P(T) .

Example: Let us consider the table «BOOK» consisting of the

columns {refNo, ISBN, publisherNo}. We find that P(T) =

{refNo} and RIC(T) = {ric1, ric2} where: ric1 (BOOK, {refNo},

REFERENCE {refNo}), and ric2 (BOOK, {publisherNo},

PUBLISHER {publisherNo}). We note that LA(ric1) = {refNo} =

P(REFERENCE) , therefore BOOK is in case 2

4.2.3 Case 3
This case is the default case, it occurs when none of previous

cases occur.

Example: Let us consider the table «AUTHOR», it consists of the

columns: {authorNo, name}. We note that P(T) = {authorNo} and

F(T) = {}, so PF(T) = {}. At the other hand, RIC(T) = {} , so

MODULE is not in case1 nor in case2, therefore it is in case3.

The different cases are summarized in Table 1.

Table 1. The different particular cases used in mapping

process.

Case
Necessary and sufficient

condition
Example

case1 col(T) = PF(T) and |RIC(T)| = 2 REFAUTHOR

case2 ∃ ric ∈ RIC(T), LA(ric) = P(T) BOOK

case3 T is not in case1 nor in case2 REFCOPY

When these different cases are detected in the database, the

mapping process can use them to appropriately map database

components to suitable ontology components as follows.

4.3 Mapping Process
The mapping process is done progressively as follows. It starts by

mapping the tables to concepts and then mapping the columns to

properties. Thus, the table cases mentioned above are used twice:

one time for table-to-class mapping and the other time for

column-to-property mapping. The mapping process consists

therefore of the following steps:

1. The database tables that are in case 3 are mapped to OWL

classes.

2. The tables in case 2 are mapped to subclasses of those

classes corresponding to their related tables, i.e. if T is in

case 2 then there is a referential integrity constraint ric ∈

RIC(T) where ric (T, P(T), T1, P(T1)), so T is mapped to a

subclass of the class corresponding to T1 . For example, the

tables BOOK and JOURNALARTICLE are mapped to

subclasses of the class corresponding to the table

REFERENCE.

3. Each table in case 1 is not mapped to class, but the many-to-

many relationship that it represents is expressed by object

properties. Two object properties are added, one for each

class whose corresponding table was related to the current

table. In other words, when a table T is in case 1 then there

are two referential constraints: ric1 (T, A1, T1, P(T1)) and ric2

(T, A2, T2, P(T2)), and if c1, c2 are the two classes

corresponding to T1, T2 respectively, so we assign to c1 an

object property op1 whose range is c2 , and assign to c2 an

object property op2 whose range is c1. Each of these two

properties op1, op2 are inverse to the other. For example, the

table REFAUTHOR is in case 1, it relates two other tables

REFERENCE and AUTHOR, so it is not mapped to a class,

but we assign to the class AUTHOR an object property

REFAUTHOR.refNo whose range is the class REFERENCE,

and we assign to the class REFERENCE an object property

REFAUTHOR.authorNo whose range is the class AUTHOR.

4. For tables that are in case 3, we map their referential

constraints to object properties whose ranges are classes

corresponding to their related tables; i.e. if a table T is in

case 3 and has a ric(T, A, T1, A1) and if c, c1 are the classes

corresponding to T, T1 respectively, then we assign to c an

object property op whose range is c1, and we assign to c1 an

object property op' whose range is c. To preserve the original

direction of the referential constraint from T to T1, we set the

object property op as functional. So it will have at most one

value for the same instance. This characteristic is obvious

because it comes from the uniqueness of key. For example,

the table REFCOPY is in case 3 and it has a referential

integrity constraint with the table REFERENCE, so we

assign to its corresponding class an object property

REFCOPY.refNo which is functional and whose range is the

class corresponding to table REFERENCE, and we assign to

the class corresponding to REFERENCE an object property

REFERENCE.REFCOPY whose range is the class

corresponding to REFCOPY, each of those object properties

is inverse to the other.

5. For tables that are in case 2 and have other referential

constraints than the one used to create the subclass, we map

them to object properties as in the previous step. For

example, the table BOOK is in case 2 and has a referential

integrity constraint with the table PUBLISHER (other than

its constraint with REFERENCE which is used to make it a

subclass), so we assign to BOOK an object property

BOOK.publisherNo which is functional and whose range is

PUBLISHER, and we assign to PUBLISHER an object

property PUBLISHER.BOOK whose range is BOOK.

6. Finally, for all tables we map their columns that are not

foreign keys to datatype properties. The range of a datatype

property is the XML schema data type [3] equivalent to the

data type of its original column. The column NAME in the

table AUTHOR is mapped to a datatype property

AUTHOR.NAME whose range is XSD string datatype.

An example of resulting OWL ontology is given in figure 5.

<owl:Class rdf:ID="&BOOK">
 <rdfs:subClassOf rdf:resource="REFERENCE"/>
</owl:Class>
<owl:FunctionalProperty rdf:ID="BOOK.PUBLISHERNO">
 <rdfs:domain rdf:resource="#BOOK"/>
 <rdfs:range rdf:resource="#PUBLISHER"/>
</owl:FunctionalProperty>

 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="PUBLISHER.BOOK">
 </owl:inverseOf>
</owl:ObjectProperty>
<owl:DatatypeProperty rdf:ID="BOOK.ISBN">
 <rdfs:range rdf:resource="&xsd;string"/>
 <rdfs:domain rdf:resource="#BOOK"/>
</owl:DatatypeProperty>

In summery, this algorithm uses a key-based approach to generate

ontology components. In general, concepts are created from

tables, object properties are created from integrity constraints

(foreign keys) and datatype properties are created from non-key

columns. Concept hierarchy is built using a hypothesis based on

primary and foreign keys (step 2). For semantically enriching the

resulting ontology, some particularities of OWL language is

exploited such as functional properties and inverses of object

properties.

4.4 Mapping Generation
During the mapping process, a R2O [2] document is automatically

generated to record the relationships between generated ontology

components and the original database components. It includes (1)

a full description of the database schema, (2) a set of concept map

definitions consisting of the name of concepts with their

Figure 5. A portion of resulting OWL document for the

class BOOK and its properties.

identifying column(s), and (3) a set of relation and attribute map

definitions. This document can be used by the query web service

to translate ontological queries into SQL queries and retrieve

corresponding instances. Figure 6 shows an example of a class

map definition from the mapping document.

<conceptmap-def>

 <name>BOOK</name>
 <use-table>BOOK</use-table>
 <described-by>
 <relationmap-def>
 <name>BOOK.PUBLISHERNO</name>
 <use-dbcol>BOOK.PUBLISHERNO</use-dbcol>
 <to-concept>PUBLISHER</to-concept>
 </relationmap-def>
 <attributemap-def>
 <name>BOOK.ISBN</name>
 <use-dbcol>BOOK.ISBN</use-dbcol>
 </attributemap-def>
 </described-by>

</conceptmap-def>

5. DISCUSSION AND RELATED WORK
In the literature there are several approaches for addressing

database to ontology mapping. As mentioned in section 2, these

approaches can be classified into two main categories: (1)

approaches that create new ontologies from existing databases and

(2) those that map databases to existing ontologies. In the first

category, we can note these relevant projects:

Volz et al. in [15] [16] propose an approach based on semi-

automatic generation of a F-Logic ontology from a relational

database model. Mappings are defined between the database and

the generated ontology. The ontology generation process takes in

account different types of relationship between database tables

and maps them to suitable relations in the ontology. The mapping

process is not completely automatic and a user intervention is

needed when several rules could be applied to choose the most

suitable. The DataGenie 2 project is a Protégé 3 plug-in that

allows the automatic generation of a Protégé ontology from a

relational database. This generation process is simple and direct.

Each table is transformed to a class and each attribute is

transformed to a property. In addition, if the relational database

table has foreign key references to other tables, these can be

transformed to instance pointers, i.e. a new slot is added to the

class representing the reference table whose value is an instance

of the class representing the referenced table. The user selects

manually the tables that he wants to map to the ontology, then the

mapping process is done completely automatically.

Relational.OWL [6] is an OWL ontology representing abstract

schema components of relational databases. Based on this

ontology, the schema of (virtually) any relational database can be

described and in turn be used to represent the data stored in that

specific database. This approach uses the meta-modelling

capabilities of OWL-Full, which prevents the use of decidable

inference on the resulting ontology.

2 http://protege.cim3.net/cgi-bin/wiki.pl?DataGenie.

3 http://protege.stanford.edu/.

In the category of mapping a database to an existing ontology,

several languages have been proposed to formally express

database to ontology mappings. D2R map [4] is a declarative,

XML-based language to describe mappings between relational

database models and ontologies implemented in RDFS. In D2R,

basic concept mappings are defined using class maps that assign

ontology concepts to database sets. The class map is also the

container of a set of attribute and relation mapping elements

called bridges. The D2R language allows flexible mappings of

complex relational structures by employing SQL statements

directly in the mapping rules. In [2], the authors propose another

declarative language, called R2O, that describes mappings

between database schemas and ontologies. It is more expressive

than D2R map as it provides an extendable set of condition and

transformation primitives. After the manual generation of a R2O

document, it is processed by ODEMapster, a generic query engine

that automatically populates the ontology with instances extracted

from the database content. This operation can be done in two

modes: (1) query driven, i.e. parsing a specific query and

translating its result or (2) massive dump, i.e. creating a semantic

RDF repository and translating the full database to it.

Beside languages, mapping approaches include some tools like

KAON Reverse 4 which is a prototype for mapping relational

database content to ontologies. The mapping rules describing the

relation between the database schema and the ontology structure

are defined manually, then the instances will be exported

automatically. There are two principal types of mappings: Table

Mapping relates a table to a concept while Column Mapping

relates a table column to an attribute or to a relation. A column

mapping can only be defined in the context of a Table Mapping.

The whole mapping consists of a set of elements of these two

mapping elements. The limitations of this tool are that it does not

cope with multiple inheritance of concepts does not support

relations with multiple domains, and does not support ontologies

that have concepts with different namespaces. Another interesting

tool is Vis-A-Vis [7] which is a Protégé plug-in that allows to map

relational databases to existing Protégé ontologies. Mapping is

done by selecting from the database a dataset corresponding to an

ontology class. A new property is added to the class which

consists of an SQL query which will be executed and return the

desired dataset. This tool also performs a set of consistency

checks to insure the validation of mappings.

Table 2 summarizes the features of these different approaches

including our approach DB2OWL. We find that the definition of

mapping is automatic or semi-automatic in the approaches that

create a new ontology, whereas there is no approach allowing the

completely-automatic definition of mapping to an already existing

ontology. At the other hand, the process of ontology population is

always automatic. We also note that the approaches that create a

new ontology utilize the massive dump process for ontology

population, except our approach DB2OWL which allows the

query driven process.

Our approach belongs to the first category where a new ontology

is created from the database, therefore we evaluate it versus the

three first approaches. DB2OWL uses mapping rules similar to

those of Volz et al. approach, but we use OWL instead of F-

Logic, we consider the default cases of mapping in order to get a

4 http://kaon.semanticweb.org/alphaworld/reverse/view.

Figure 6. Mapping document for BOOK class and its

properties.

full automatic process of mapping. We suppose that a user

intervention may be needed later to refine the created ontology,

but this still beyond the mapping process. In DataGenie and

Relational.OWL the created ontology is a direct copy of the

database schema and they do not take in count any specific table

cases in the database. Furthermore, in Relational.OWL all

database columns are mapped to datatype properties even the

foreign keys, whereas in DB2OWL we map foreign keys as object

properties.

Table 2. Features of different database-to-ontology mapping

approaches.

The major characteristic of DB2OWL is that it aimed at separating

data mapping from schema mapping. Hence, the data

manipulating, i.e. insert, delete, and update instances in the

database, will not affect the corresponding ontology. We believe

that a query driven population of the ontology is more effective

than a massive dump, and it maintains the retrieved instances up-

to-date.

6. CONCLUSION AND FUTURE WORK
We have presented an architecture for an ontology based

cooperation system between heterogeneous information sources,

and have focused on DB2OWL which is a tool to map relational

databases to OWL ontologies. This tool is a local application

encapsulated in the data provider service to create a local

ontology from the local information source. We have

implemented a prototype of this tool in Java that uses JDBC

interface for database inter-connections. We use

DatabaseMetaData java class to obtain a description of the

database tables. These information about the database are

encapsulated in a database model that we use as input to our

mapping algorithm. The execution of this algorithm builds an

abstract ontology model, which is implemented by the Jena API to

give the OWL ontology (see figure 7). During the execution of the

algorithm, a mapping document is automatically generated for

recording the occurred correspondences between ontology

components and their original database components.

Currently, this tool deals only with Oracle and MySQL databases

because they provide specific views about the database metadata

(USER_CONSTRAINTS in Oracle, and information_schema in

MySQL). Extension of the presented tool are underway to deal

with other DBMS that provide such views. In addition, DB2OWL

will be developed further to map several databases to one

ontology.

7. REFERENCES
[1] Baader, F., Horrocks, I., Sattler, U. Description logics as

ontology languages for the semantic web. In Staab, S.,

Studer, R., eds.: Lecture Notes in Artificial Intelligence.

Springer Verlag, 2003.

[2] Barrasa, J., Corcho, O., Gómez-Pérez A. R2O, an Extensible

and Semantically Based Database-to-Ontology Mapping

Language. Second Workshop on Semantic Web and

Databases (SWDB2004). Toronto, Canada. August 2004.

[3] Biron, P.V. and Malhotra A. (Eds). XML Schema Part 2:

Datatypes. W3C Recommendation, May 2001.

http://www.w3.org/TR/xmlschem-2/.

[4] Bizer, C. D2R MAP – A Database to RDF Mapping

Language, The twelfth international World Wide Web

Conference, WWW2003, Budapest, Hungary, 2003.

[5] Borgida, A., An, Y., and Mylopoulos J. Inferring Complex

Semantic Mappings Between Relational Tables and

Ontologies from Simple Correspondences. In CoopIS, DOA,

and ODBASE, OTM Confederated International

Conferences, Cyprus, Part II, volume 3761 of LNCS, pages

1152 - 1169. Springer, 2005.

[6] de Laborda, C. P. and Conrad, S. Relational.OWL A Data

and Schema Representation Format Based on OWL. In

Second Asia-Pacific Conference on Conceptual Modelling

(APCCM2005), volume 43 of CRPIT, pages 89 -96,

Newcastle, Australia, 2005. ACS.

[7] Fuxman, A., Hernández, M.A., Ho, H., Miller, R, Papotti, P.,

Popa, L. Nested Mappings: Schema Mapping Reloaded.

Proc. VLDB 2006 Conf., pp. 67-78, Seoul, Korea, 2006.

[8] Kalfoglou, Y., and Schorlemmer, M. Ontology mapping: the

state of the art. Knowledge Engineering Review, 18(1), 1-31.

2003.

[9] Konstantinou, N., Spanos D., Chalas M., Solidakis E., and

Mitrou N. VisAVis: An Approach to an Intermediate Layer

between Ontologies and Relational Database Contents.

International Workshop on Web Information Systems

Modeling (WISM 2006) Luxembourg, 2006.

[10] Miller, R., Haas, L., and Hernandez, M.A. Schema Mapping

as Query Discovery. Proc. VLDB 2000 Conf., pp. 77-88,

Cairo, Egypt, 2000.

Approach

Ontology Exploitation Automatisation

C
re
at
ed

E
x
is
ti
n
g

M
as
si
v
e

d
u
m
p

Q
u
er
y

d
ri
v
en

M
ap
p
in
g

d
ef
in
it
io
n

In
st
an
ce

ex
p
o
rt

Volz et al. ×××× ×××× Semi Auto

DataGenie ×××× ×××× Auto Auto

Relational.OWL ×××× ×××× Auto Auto

KAON reverse ×××× ×××× Semi Auto

vis A vis ×××× ×××× Manual Auto

D2R map ×××× ×××× Manual Auto

R2O ×××× ×××× ×××× Manual Auto

DB2OWL ×××× ×××× Auto Auto

Figure 3. Mapping Process.

[11] Petrini, J. and Risch T. Processing Queries over RDF views

of Wrapped Relational Databases. In 1st International

Workshop on Wrapper Techniques for Legacy Systems,

WRAP 2004, Delft, Holland, 2004.

[12] Prud'Hommeaux, E. and Seaborne, A,. SPARQL Query

Language for RDF. World Wide Web Consortium, Working

Draft WD-rdf-sparql-query-2006, 2006

[13] Rodriguez, J. B. and Gómez-Pérez, A. Upgrading relational

legacy data to the semantic web. In Proceedings of the 15th

International Conference on World Wide Web (Edinburgh,

Scotland, May 23 - 26, 2006). WWW '06. ACM Press, New

York, NY, 1069-1070.

[14] Shvaiko, P., and Euzenat, J. A Survey of Schema-Based

Matching Approaches. J. Data Semantics IV 3730 (2005),

146-171.

[15] Volz, R., Stojanovic L., Stojanovic N. Migrating data-

intensive Web Sites into the Semantic Web. ACM

Symposium on Applied Computing (SAC 2002). Madrid,

Spain, March 2002.

[16] Volz, R., Handschuch S., Staab S., Studer R. OntoLiFT

Demonstrator, 2004.

[17] Wache, H., et al. Ontology-Based Integration of Information

- A Survey of Existing Approaches. In Stuckenschmidt, H.,

editor, IJCAI-2001 Workshop on Ontologies and

Information Sharing, pages 108-117, Seattle, USA, April 4-

5, 2001.

