
OWSCIS: Ontology and Web Service based Cooperation of Information
Sources

Raji Ghawi, Thibault Poulain, Guillermo Gomez and Nadine Cullot
Laboratoire Electronique Informatique et Image

UMR CNRS 5158, Université de Bourgogne
21000 Dijon, France

{raji.ghawi, thibault.poulain, nadine.cullot}@u-bourgogne.fr, gomezcarpio@yahoo.com

Abstract

The growing amount of distributed data over the

internet leads to increasing needs for
interoperability. Being able to take into account the
meaning of information is a real challenge for
suitable data sharing. The semantic web and the
ontologies are relevant technologies to provide
semantic cooperation of heterogeneous sources. We
propose a complete architecture OWSCIS (Ontology
and Web Service based Cooperation of Information
Sources) which allows to query a cooperation of
information sources. The semantic of the local data
is expressed using local ontologies which are
mapped to a reference ontology. This reference
ontology can be queried by an end user to
transparently access the cooperation. The different
components of the architecture are described: the
data providers, the knowledge base, the inter-
ontology mapping process, the visualization service
and the querying service. A special focus is done on
the latter service.

1. Introduction and Motivation

In the last few years, huge amounts of information
are becoming available over the web and over
corporate and governmental networks. The
exponential growth of the Internet as well as current
advances in telecommunication technologies led to
an unparalleled increase of the number of online
information sources. However, the access to
information remains limited as long as it is stored in
separate sources.

This situation, along with an increasing
specialization of works, a large variety of data
representation paradigms, and rising acquisition
costs of multimedia data, exacerbates the need for
easy methods to combine data from different
sources. To achieve this, information has to be
shared, combined and/or exchanged between
multiple actors (individuals, companies and
governments) and/or from multiple information

sources, and accessed transparently by their final
receivers. This problem is known as information
integration or interoperability problem.

Interoperability is hard to achieve due to: 1) the
distribution of information over multiple sources - a
query could not be answered by the data available
from a single information source, 2) the
heterogeneity of the different information sources,
and 3) the instability - new information sources
appear every day, while others disappear, while
existing information sources change the format of
their data, or change their content.

Most of research efforts to reach interoperability
tend to only address interoperability issues at the
platform and syntactic level. However, such efforts
fail to focus on the semantic, which contains an
important part of information. Discrepancies in the
way information sources are specified hinder
information sharing between software applications.
Conversely, being able to explicitly model the
meaning of information promises to move
information integration technology to new levels of
flexibility and automation [1] .

The Semantic Web is a key approach to the
semantic interoperability. It is, as originally proposed
by Tim Berners Lee [5], an extension of the current
web, in which the web content can be expressed in a
way that, in addition to be human readable, can be
understood by software agents. The vision of the
semantic web energized the development of
ontologies. An ontology explicitly describes the
various concepts of a given knowledge domain and
their semantic relations in a formal way that is
agreed by several parties. Hence, it can be taken as a
unifying formalism for giving information a common
representation and semantics.

In addition to ontologies, web services are
increasingly used to support the interoperability
between different applications and clients over the
web using recently developed internet-oriented data
models, standards and protocols such as SOAP,
WSDL, and XML. Web services guarantee the

independence of an application from any particular
platform or implementation.

We propose a cooperation architecture, called
OWSCIS1 , that uses ontologies and web services
technologies to provide an interoperable solution for
integrating distributed and heterogonous information
sources. Most of the architecture components are
encapsulated in web services to perform specific
tasks, like the mapping, querying and visualization
web services.

In our architecture, information sources may
contain different types of data structures. However,
all of these sources must be mapped to a local
ontology which will express the semantic of
information sources. In OWSCIS, information
sources are encapsulated in what we call “Data
Providers”. A data provider is a module that allows
to wrap an information source to a local ontology
using our tool DB2OWL [9]. Local ontologies are
mapped also to a reference ontology.

This paper is organized as follows. In section 2,
we give a background and review some related
works. In section 3, we give an overview of the
general cooperation architecture and its various
components. In section 4, we introduce the inter-
ontology mapping process. Section 5 presents the
querying process in details. In section 6, we discuss
our system features and its implemented parts and
we conclude with some future work remarks.

2. Background and Related Works

There are many systems that propose to solve the
problem of interoperability between distributed
heterogeneous information systems using ontologies.
It is very difficult to exhaustively cover the state of
the art of this domain for several reasons including
the large number of proposed systems, and the
variety of the contexts within which those
approaches are exploited. However, we refer to the
most known systems in this area such as BUSTER
 [16], SIMS [2], KRAFT [12], COIN [11], Carnot
 [19], Infosleuth [4], and OBSERVER [14]. We refer
also to some interesting surveys such as [18], [17] ,
and [6].

There are several criteria that are usually used to
compare ontology-based integration systems, such
as: the types of information sources involved in the
integration, the architecture type, the use of
ontologies, the ontology representation language and
the query processing. In this section, we present
these features as well as some related works, and we
compare our system OWSCIS versus these features
in section 6.

The information sources involved in a
cooperation system are the sources used by the

1 OWSCIS stands for: Ontology and Web Service based
Cooperation of Information Sources.

system to retrieve the information to answer users’
queries. Buccella et al. in [6] divide the information
sources feature into two categories: the state of
information sources (SIS) and the type of
information sources (TIS). The state of information
sources may be static or dynamic, in the later case
the integration system should provide some means to
know which sources are available at a given moment.
Examples of dynamic systems are SIMS,
OBSERVER, KRAFT, InfoSleuth and COIN. The
main types of information supported by the system
include: databases, XML documents, files and
HTML pages. Most of existing systems support
databases but only some of them support semi-
structured data (XML or HTML pages) such as
OBSERVER, Infosleuth and COIN.

Two types of architecture are generally identified
in cooperation systems: agent-based and
wrapper/mediator-based systems. Agent
architectures are designed to allow software
processes to communicate knowledge across
networks, in high-level communication protocols.
They are highly dynamic and open, allowing agents
to locate other agents at runtime, discover the
capabilities of other agents, and form cooperative
alliances. However, if the number of agents is large,
the communication among them may become
expensive to implement and their interaction become
difficult to understand.

Mediator-based architectures are based on two
main components: mediator and wrapper. The
mediator is usually used to create an integrated view
of data over multiple sources, and the wrapper is
used to map local information sources to a common
data model. In this type of architecture, all the
information needed to achieve the integration is
stored in the mediator. However, the mediator can
make itself appear complex and difficult to
manipulate. Also, performance aspects must be taken
into account [6]. KRAFT, Carnot, and Infosleuth are
examples of agent-based systems, while SIMS and
COIN are examples of mediator-based systems.

In [18], Wache et al. distinguish three types of
approaches according to the way of exploiting
ontologies in information cooperation: single,
multiple and hybrid ontology approaches. Single
ontology approaches use one global ontology to
which all information sources are linked by relations
expressed via mappings that identify the
correspondence between each information source
and the ontology. In multiple ontologies approaches,
each information source is described by its own
ontology and inter-ontology mappings are used to
express the relationships between the ontologies. The
hybrid approaches combine the two previous
approaches. Each information source has its own
ontology and the semantic of the domain of interest
as a whole is described by a global reference
ontology. In these approaches there are two types of

mappings: mappings between an information source
and its local ontology and mappings between local
ontologies and the global ontology. SIMS is an
example of the first approach, OBSERVER of the
second and BUSTER of the third.

Literature describes many ontology specification
languages. We can distinguish between traditional
ontology languages (such as Ontolingua, OKBC,
OCML, F-Logic, LOOM) and web-based languages
(XML, RDF(S), XOL, SHOE, OIL, DAML,
DAML+OIL, OWL). These languages are based on
different knowledge representation paradigms such
as Description Logics (CLASSIC, OIL, LOOM,
CARIN, AL-log, DLR, and OWL-DL), and Frame-
based systems (F-Logic, OKBC, Ontolingua). We
refer to [8] and [18] for a comparison of ontology
languages.

The query process is a set of steps needed to
achieve a query defined by the users. The general
approach used to process global queries get through
three steps: first, a global query is decomposed into a
number of sub-queries such that the data needed by
each sub-query are available from one information
source. After the decomposition, each sub-query is
translated to a query or some queries of the
corresponding local information system and sent
there for execution. Finally, the results returned from
local sources are combined into the answer. Most of
cooperation systems follow this general strategy.
However, each system has its own particular method
to process queries which is different from other
systems (see [6] to review different methods of
different systems).

3. General Architecture

OWSCIS is a cooperation system between several
information sources and aims at answering user
queries on these sources in an integrated centralized
way. Users can query heterogeneous and distributed
information sources simultaneously and combine the
obtained results in order to transparently get
information that may not be available directly. For
each incorporated information source a local
ontology is used to describe it. This local ontology
has to be linked to actual information; therefore,
mappings between the source and the local ontology
have to be provided.

Beside local source ontologies, a global ontology
is used to describe the semantics of the whole
domain of interest. This global ontology is a
reference for all incorporated local ontologies and it
is supposed to cover their domains. In order to
interconnect local ontologies, they are mapped to the
global ontology which plays the role of mediator.

Our architecture deals with all steps needed to
interconnect various data storing systems, from the
creation of a local ontology to the visualization of the
results obtained by queries. It consists of several

modules and web services, each of them aims at
performing a specific task as shown in figure 1. A
data provider module is a wrapper that associates an
information source with its local ontology. A
knowledge base module is a unique mediator used to
encapsulate the global ontology with a toolbox and a
directory for participating data providers. A mapping
web service is used to establish mappings between
the local ontologies and the global one. User’s
queries are submitted only on the reference ontology
via a query web service that analyses the queries,
decompose them into sub-queries which are
redelivered to the relevant data providers. Finally, a
visualization web service performs the tasks of
suitably presenting the obtained results to the end
user.

3.1. Knowledge Base

This is the main component of the architecture; it
centralizes all information needed to exploit the
whole cooperation system. It is composed of a
reference ontology, a mappings directory, and a
toolbox. The reference ontology describes an
agreement over a specific knowledge domain. All the
specified concepts of the local ontologies are
assumed to have similar concepts in a reference
ontology. Each local ontology refers to specific parts
of a domain which is globally covered by a reference
ontology. Several reference ontologies can be
designed if different knowledge domains are
considered but do not yet deal with cases where a
data provider describes information overlapping two
or more reference ontologies. A reference ontology
is generated as an agreement between the data
providers.

The reference ontology is described in OWL-DL
language2, a W3C recommendation for publishing
and sharing ontologies on the web. OWL-DL is
based on Description Logics [3], a family of
knowledge representation languages, which is
characterized by its expressiveness and reasoning
power.

The mapping directory is a simple table listing the
concepts from the reference ontology and associating
each concept with a list of the data providers that
have an equivalent concept. It is created during the
mapping process and used to quickly find which data
provider is relevant to a given query. It does not
contain the exact mappings, which are stored in the
various data providers.

The toolbox contains all information needed to
perform the mappings, including a set of tools and
methods that are used by the mapping web service to
estimate the similarity between ontologies
components. It describes the way the mapping
estimation will happen. It basically list which

2 http://www.w3.org/TR/owl-features/.

methods should be used for the similarity estimation
and their relative importance. If several mapping
methods are available, it also defines which one, or
which combination of them has to be used.

Figure 1. Global architecture of OWSCIS system.

3.2. Data Provider

A data provider encapsulates an information
source incorporated in the cooperation system. We
consider that an information source may contain
different types of data structures. A data provider can
contain several of them as long as they are all
associated to a common ontology called the Local
Ontology which describes the whole semantic of this
information source.

The data provider also holds two types of
mappings: information source to local ontology
mapping, and local ontology to reference ontology
mapping, as described in figure 2. In this paper, we
only deal with information source based on relational
databases.

The local ontology of the data provider does not
necessarily exist before the connection to the
platform; therefore it has to be created from the
information source. We suppose in this paper that the
information source is a relational database and that
the other types of sources have to be treated in
another suitable way. We have developed a tool
called DB2OWL that automatically generates a local
ontology from a relational database. This tool also
generates a description of the mapping between the
database and the resulting local ontology. This
mapping document is used in the query process as
we will see in section 4.2. Our objective is to keep
the instances apart from the structure of their
ontology. Therefore, the generated ontology only
contains the concepts and properties but not the
instances, which stay in the database and are
retrieved and translated as needed in response to user
queries. A data provider service also plays the role of
wrapper that translates queries over its local ontology
into SQL queries over its data source and
reformulates the results according to the local
ontology.

Figure 2. The architecture of the data provider.

3.3. Mapping Web Service

This service is used to map the local ontologies to
the reference domain ontology. Any ontology can be
mapped to another within two sets of mappings. By
centralizing the mappings we ensure a limited
number of mappings as well as a reduced loss of
information. Any query can be solved over a view on
the reference ontology. This allows the simplification
of the queries.

To add a new data provider to the architecture, its
local ontology must be mapped to the reference
ontology following some general guidelines
complemented with specific parameters of the
knowledge base module.

The mapping web service compares two
ontologies using the methods defined inside the
knowledge base module toolbox, and produces inter-
ontology mappings which will be stored into the
appropriate data provider, as well as an up-to-date
version of the mappings directory in the knowledge
base module. The similarity estimating process is
discussed later in section 4.

3.4. Querying Web Service

Once the various data providers are connected to
the knowledge base module, users can query them
using the querying web service. When a query
(expressed in SPARQL language [15]) is submitted
to the system, it is analyzed by this service and
decomposed into a set of modular queries. Then,
using the mapping directory in the knowledge base,
the query web service redirects the single queries to
the suitable data providers.

When a SPARQL query is received by a data
provider service, it is translated into an SQL query
using the mappings between the database and the
local ontology. The SQL query is executed in the
database and its result is encapsulated as a SPARQL
answer and returned to the query web service. The
query web service collects the responses returned
from data provider services and recomposes them in
one coherent response which is sent to the
visualization web service. The full querying process
is described in section 5. The final answer is
redirected to the visualization web service which

displays it in an easily-understandable way for the
user.

3.5. Visualization Web Service

The visualization service proposes different
functionalities including the visualization of the
reference ontology or the visualization of the queries
and their results. It offers a graphical interface
allowing the navigation through the reference
ontology and it is possible to visualize the concept
hierarchy, the properties with their domain and
range.

The visualization service can also be used to show
the results of a query in a dynamic and convivial
way. The main idea is to use the semantic
information described in the reference ontology to
enrich the results of the query allowing a more
intelligent visualization of them.

The query is analyzed to identify all the relevant
concepts and properties participating to the query.
Then these components are identified in the
reference ontology to extract a coherent sub-part of
it, containing these concepts and properties.

An adequate visualization of the results of the
query using this ontology sub-part is then chosen
including 2D representation (such are graphs, sets or
other metaphoric representation) or 3D visualization.

The user can see the results and dynamically
queries the proposed representation. The query
results are viewed as instances of the concepts and
properties specified in the query and satisfying its
restrictions.

The visualization process aims at proposing a real
dynamic and convivial presentation of the query
results helping the user to analyze them quickly.

4. Mapping Process

As mentioned in section 2.3, a mapping web
service is used to establish mappings between local
ontologies and the reference ontology in the
knowledge base module. The mapping process is
composed of four main steps: preprocessing,
similarity estimation, refining and exploitation.

After a preprocessing step which cleans up the
data, we compute a first similarity estimation. The
similarity estimation gives a numerical similarity
estimation value to all pairs of concepts (C1, C2), C1
being a concept of a local ontology and C2 being a
concept of the reference ontology. It uses several
similarity estimation methods described in the
toolbox. We use both semantic and structural
methods. On one hand, we automatically extract
known words from the concepts names and perform
a semantic similarity estimation over them. On
another hand, we estimate structural similarity by
comparing concept names as a string.

Combining the two methods allows us to benefit
from both similarity estimation methods. Semantic
similarity gives results closer to human inferred
similarity than string similarity over known words.
String similarity allows us to obtain a similarity
measure over the parts of the concepts names that we
were not able to recognize as keywords, like dubious
abbreviations or acronyms. The various results are
normalized and combined using a weighted mean.
These weights are defined in the toolbox as well. The
resulting table of values is then refined.

The refining step allows to solve cases where the
similarity value between two concepts is neither high
enough nor low enough to determine whether there is
an equivalence or not. This process relies on the
iterative application of a set of rules on the structure
of both ontologies. It disambiguates the similarity
results obtained during the previous step by taking
into account the neighborhood of the concepts.
Specific neighborhood situations are described by
so-called rules provided by the toolbox. The toolbox
also describes how the similarity of the pair of
concepts or properties is modified when such
situations are encountered.

For example, if both fathers concepts of a checked
pair of concepts are similar, then this checked pair
has more chance to be similar. Therefore, if the
condition of this rule is respected then the similarity
between the two checked concepts of the pair is
increased. This iterative process propagates relevant
similarities over the structures of the ontologies.

Once similarities are estimated, they must be
translated from their numerical values into mappings.
This translation can be done automatically,
producing the overall mapping between the two
ontologies, or iteratively. In that latter case, the
program suggests what appears to be the best
mapping, and let the expert validate or not the
choice. Once a mapping is validated by the expert,
modifications can be made into the similarity table to
respect the consistency between the following
mapping suggestions and the existing ones.

The resulting mappings are stored in the data
provider, to allow the translation of the queries and
answers from and to this specific data provider.

5. Querying Process

Users submit their queries (expressed in SPARQL
language [15]) to the querying web service in terms
of the reference ontology. When the querying web
service receives a query, it will decompose it into a
set of sub-queries using the mapping directory in the
knowledge base. The mapping directory contains a
list of reference ontology’s components and shows
for each concept (respectively, property) which local
ontologies have an equivalent concept (respectively,
property). Each sub-query will be directed to the
suitable data provider where it will be rewritten in

terms of the local ontology and translated to an
equivalent SQL query.

The SQL query is evaluated by the local DBMS
and its results will be formulated as SPARQL Query
Results in XML Format3. These results are returned
to the querying web service. The various results
collected from the different data providers will be
recomposed by the querying web service yielding the
final result of the user’s query. The whole query
processing is illustrated in figure 3.

Figure 3. Query processing in OWSCIS.

5.1. Query decomposition

A query is composed of a set of triple patterns;
each of them corresponds to a concept or a property
in the reference ontology. Using the mapping
directory, the query is decomposed into a set of
modular queries which will be sent to relevant data
providers. For each component (concept or property)
in the reference ontology, the mapping directory
contains a list of which local ontologies has an
equivalent component. The decomposition process
depends on the ontological components mentioned in
the query triple patterns. For a given local ontology,
the sub-query will be a copy of the original query,
but contains only the triple patterns that correspond
to some components in the given local ontology.

If a variable in the global query is shared between
several sub-queries, it will be set in the SELECT
clause of each of these sub-queries, and it will be
used later for re-composing their results. For
example, let us consider the reference ontology in
figure (4a) and the two local ontologies in figure (4b)
and (4c). Let us consider the query in figure 5 which
retrieves the titles of books written by a teacher of
Database module. This query is decomposed into
two sub-queries shown in figure (6a, 6b) over the
local ontologies. Note that the variables ?fn and
?ln are shared between both queries, so they are
used in the SELECT clause of both of them.

3 http://www.w3.org/TR/rdf-sparql-XMLres/.

Figure 4. (a) An excerpt of reference ontology,

(b)(c) excerpts of two local ontologies.

SELECT ?t
WHERE {
 ?b ro:book_author ?a .
 ?b ro:title ?t .
 ?a ro:lastName ?ln .
 ?a ro:firstName ?fn .
 ?s ro:session_lecturer ?l .
 ?l ro:lastName ?ln .
 ?l ro:firstName ?fn .
 ?s ro:session_module ?m .
 ?m ro:module_name "Database" .
}

Figure 5. Global query

After the decomposition phase (performed by

querying web service), each sub-query is redelivered
to its appropriate data provider. When a sub-query is
received by a data provider, it is firstly rewritten in
terms of the local ontology (by replacing each
reference ontology component by its equivalent
component in the local ontology). For the example,
the rewritten sub-queries are shown in figure (6c,

6d). The new query is translated into SQL query over
the local database.

SELECT ?ln ?fn ?t
WHERE {
 ?b ro:title ?t .
 ?b ro:book_author ?a .
 ?a ro:lastName ?ln .
 ?a ro:firstName ?fn .
}

(a) Sub-query1
SELECT ?ln ?fn
WHERE {
 ?s ro:session_lecturer ?l .
 ?s ro:session_module ?m .
 ?m ro:module_name "Database" .
 ?l ro:lastName ?ln .
 ?l ro:firstName ?fn .
}

(b) Sub-query2
SELECT ?ln ?fn ?t
WHERE {
 ?b lo1:title ?t .
 ?b lo1:book.author ?a .
 ?a lo1:author.lastName ?ln .
 ?a lo1:author.firstName ?fn .
}

(c) Rewritten sub-query1
SELECT ?ln ?fn
WHERE {
 ?s lo2:session.lecturer ?l .
 ?s lo2:session.module ?m .
 ?m lo2:module.name "Database".
 ?l lo2:lastName ?ln .
 ?l lo2:firstName ?fn .
}

(d) Rewritten sub-query2

Figure 6. Two sub-queries over local ontologies.

5.2. SPARQL to SQL translation

In order to perform this kind of translation, a
suitable SQL statement is needed for every concept
and property in the local ontology. These statements
are used as bracketed (nested) SELECT statements to
form the FROM clause of the final SQL query.

In the case where the local ontology is created by
DB2OWL tool, the necessary SQL statements are
automatically created by the query engine (using the
generated mapping document which associates each
ontology component with its equivalent database
component, see section 2.2). In other cases, SQL
statements have to be manually provided.

A statement that corresponds to a property has
two selected columns representing the domain and
the range of the corresponding property. These
columns are given two aliases (C0 and C1
respectively). Such a statement typically retrieves the
values of the pair <domain, range> of the property
from the database. For example, the SQL statements
for the terms mentioned in sub-quey2 are listed in
figure 7.

When the translator receives a SPARQL query, it
establishes a basic graph pattern (BGP)4 of the
SPARQL query as defined in [7]. For example, the
BGP representing the sub-query2 is shown in figure
8. Then, each edge in this graph is associated with
the suitable SQL statement (from those mentioned
above) and a unique alias is generated for this
statement. The start node of the edge is associated to
the first selected column in the statement (C0) and
the end node is associated to the second one (C1).
The set of statements representing all the edges in the
graph form the FROM clause of the final SQL query.

lo2:firstName
SELECT person.personId AS C0,
 person.firstName AS C1
FROM person

lo2:lastName
SELECT person.personId AS C0,
 person.lastName AS C1
FROM person

lo2:session.lecturer
SELECT session.sessionId AS c0,
 lecturer.lecturerId AS c1
FROM session, lecturer
WHERE session.lecturerId = lecturer.lecturerId

lo2:session.module
SELECT session.sessionId AS c0,
 module.moduleId AS c1
FROM session, module
WHERE session.moduleId = module.moduleId

lo2:module.name
SELECT module.moduleId AS c0,
 module.moduleName AS c1
FROM module

Figure 7. SQL statements for sub-query2 components.

Figure 8. BGP for sub-query2.

When two (or more) edges share a variable node,

then there equivalent statements will be joined
depending on the columns representing the shared
node and the direction of the edge (incoming or
outgoing). If an edge has a literal end node, then the
equivalent statement will be restricted using a logical
condition in which the column equivalent to the node
equals the literal value.

4 A basic graph pattern is a directed graph BGP = (N, E), where N
is a set of nodes representing subjects and objects, and E is a set of
edges representing predicates.

The SELECT clause in SQL query will be the
columns equivalent to variables in SELECT clause in
SPARQL query. FILTER clauses are translated as
conjunctive WHERE clauses. Logical and comparing
operators in a FILTER clause are translated to
equivalent operators in SQL and each variable
mentioned in the FILTER is replaced by anyone of
its equivalent columns from used statement. The
final SQL query is shown in figure 9.

When the final SQL query is obtained, it is
evaluated over the local database. The results are
then formulated as SPARQL query results in XML
format. These results are returned to the querying
web service.

SELECT V0.C1 AS ln, V1.C1 AS fn
FROM
(SELECT person.personId AS C0,
 person.firstName AS C1
FROM person) AS V0,
(SELECT person.personId AS C0,
 person.lastName AS C1
FROM person) AS V1,
(SELECT session.sessionId AS C0,
 lecturer.lecturerId AS C1
FROM session, lecturer
WHERE
(session.lecturerId = lecturer.lecturerId)
) AS V2,
(SELECT session.sessionId AS C0,
 module.moduleId AS C1
FROM session, module
WHERE (session.moduleId = module.moduleId)
) AS V3,
(SELECT module.moduleId AS C0,
 module.moduleName AS C1
FROM module) AS V4
WHERE (V0.C0 = V1.C0) AND (V2.C1 = V0.C0)
AND (V2.C0 = V3.C0) AND (V3.C1 = V4.C0)
AND (V4.C1 = 'Database')

Figure 9. Final SQL query equivalent to SPARQL sub-query2.

5.3. Results re-composition

Distributed sub-queries are now solved at the data
provider level, and the results (formatted as XML
documents) are returned to the query web service.
These results are recomposed depending on shared
variables. If two queries share the same variable,
their results will be joined on the shared variable.
The joined results will be projected on the variables
selected be the user in the original query.

For example, sub-query2 has returned values for
variables ?fn and ?ln, and sub-query1 has returned
values for variables ?fn, ?ln and ?t, therefore the
results of two sub-queries are joined on variables
?fn and ?ln. In other words, sub-query1 results are
restricted to those in which ?fn and ?ln has values
in sub-query2 results, then they are projected on ?t
since the global query were asking for values of ?t.

6. Discussion and Conclusion

We introduced OWSCIS (Ontology and Web
Service based Cooperation of Information Sources),
an architecture for the cooperation of information
sources using ontologies and web services. In this
architecture, information sources are wrapped to
local ontologies to express their semantic. These
local ontologies are mapped to a reference one
agreed by the cooperation. Different web services are
proposed to 1) interconnect the local sources to the
local ontology, 2) map the local ontologies to the
reference one, 3) query the cooperation through the
reference ontology, and 4) suitably visualize the
results of the query. In order to compare OWSCIS
with existing systems we will use the features
presented in section 2.

Currently, the only type of information sources
for which OWSCIS provides tools is relational
databases. In the future, OWSCIS will provide tools
for non-relational databases and XML documents
and schemas. The information sources are dynamic
in OWSCIS, they may connect or disconnect from
the system at any time. The mapping directory
provide up-to-date information about which sources
are connected at a given moment.

OWSCIS architecture is mediator-based where
data providers play the role of (but not restricted to)
wrappers , and the role of mediator is played by both
mapping and querying web services. In order to
enhance the system performance, we choose to store
the local-to-reference ontology mappings locally at
the data provider level, whereas a summary of these
mappings is stored centrally at the mapping
directory. This directory is updated when a data
provider connect or disconnect to the system or when
it changes its contents. In another performance
aspect, we choose to centralize the query resolution
in one web service and to synchronize the resolution
of sub-queries.

Concerning the use of ontologies, our system
belongs to the hybrid ontology approach. We use a
local ontology for each information source, as well
as a unique global ontology as a reference for the
local ontologies. The advantage of wrapping each
information source to a local ontology is to allow the
development of source ontology independently of
other sources or ontologies. Hence, the integration
task can be simplified and easily support the addition
and removal of sources.

In OWSCIS, we use OWL language for both the
local ontologies and the reference ontology. OWL is
a rich and expressive ontology language that
provides additional vocabulary over RDF and RDF
schema, as well as a formal semantics. OWL is
currently a W3C recommendation.

We use SPARQL as query language in OWSCIS.
We adopt the general methodology of query
processing in integration systems (see section 2) and
adapt it for decomposing SPARQL queries over the
global ontology into several sub-queries over the

local ontologies. However, our approach involves a
novel technique for translating queries from
SPARQL to SQL.

SPARQL is an emerging W3C query language for
RDF data. It may be used to query OWL ontologies.
There are several projects [13] that propose to use
Relational DBMSs to store and query RDF data
using SQL and SPARQL. One of the most
challenging problems in such projects is the
translation of SPARQL queries into SQL. Cyganiak
in [10] defines a relational algebra for SPARQL and
outlines a set of rules to establish the equivalence
between this algebra and SQL. Chebotko et al. [7]
propose a basic graph pattern translation algorithm,
BGPtoSQL, that translates a basic graph pattern to its
SQL equivalent. Based on BGPtoSQL, they propose
a semantics preserving SPARQL-to-SQL query
translation algorithm for SPARQL queries that
contain arbitrary complex optional graph patterns.

However, all proposed approaches address the
translation of SPARQL queries into SQL queries
over an RDF store database (in which there is only
one table 'triples' with three columns: subject,
predicate and object). The approach used in
OWSCIS aims at translating a SPARQL query into
an equivalent SQL query over any arbitrary
relational database (whenever a suitable mapping
exists).

OWSCIS architecture is partially implemented in
Java using Jena API, JDBC, WordNet API and other
available APIs. Implemented parts are: DB2OWL,
SPARQL-to-SQL translator and inter-ontology
mapping module. DB2OWL [9] is a tool which
automatically generates a local ontology from a local
relational database with the associated mappings.
The inter-ontology mapping module is currently to
be tested on significant ontologies and the SPARQL-
to-SQL translator is still under development.

10. References

[1] Alexiev, V.; Breu, M. and de Bruijn, J. “Information
Integration with Ontologies: Experiences from an
Industrial Showcase,” John Wiley & Sons, 2005.
[2] Arens, Y.; Hsu, C.; Knoblock, C. A. Huhns, M. N. and
Singh, M. P. (ed.) “Query Processing in the SIMS
Information Mediator Readings in Agents,” Morgan
Kaufmann, 1997, 82-90.
[3] Baader, F.; Horrocks, I. and Sattler, U. “Description
Logics as Ontology Languages for the Semantic Web,”
Mechanizing Mathematical Reasoning, 2005, 228-248.
[4] Bayardo, R.J. et al. “InfoSleuth: Agent-Based Semantic
Integration of Information in Open and Dynamic
Environments,” In ACM SIGMOD Record Vol. 26, No. 2
(June 1997), SIGMOD '97. Proceedings ACM SIGMOD

International Conference on Management of Data, Tucson,
Arizona, USA, 1997, 195-206.
[5] Berners-Lee T.; Hendler J. and Lassila O. “The
Semantic Web,” Scientific American, May 2001.
[6] Buccella, A.; Cechich, S. A. and Brisaboa, N.
“Ontology-Based Data Integration Methods: A Framework
for Comparison,” Colombian Journal of Computation. ,
v.6, n.1, 2005.
[7] Chebotko, A.; Lu, S.; Jamil, H. M. and Fotouhi, F.
“Semantics Preserving SPARQL-to-SQL Query
Translation for Optional Graph Patterns,” 2006
[8] Corcho, O. and Gomez-Perez, A. “Evaluating
knowledge representation and reasoning capabilities of
ontology specification languages,” In Proceedings of the
ECAI 2000 Workshop on Applications of Ontologies and
Problem-Solving Methods, Berlin, 2000.
[9] Cullot, N.; Ghawi, R. and Yétongnon, K. “DB2OWL :
A Tool for Automatic Database-to-Ontology Mapping,”
SEBD, 2007, 491-494
[10] Cyganiak, R. “A relational algebra for SPARQL,”
Technical Report HPL-2005-170. 2005.
[11] Goh, C.H., Bressan, S., Siegel, M. and Madnick, S. E.
“Context Interchange: New Features and Formalisms for
the Intelligent Integration of Information,” ACM
Transactions on Information Systems, Vol. 17(3), 1999,
270–293.
[12] Gray, P.D.M. et al. “KRAFT: Knowledge Fusion
from Distributed Databases and Knowledge Bases,” In
Proceedings of the DEXA 1997, Toulouse, France, 1997,
682-691.
[13] “Mapping Semantic Web Data with RDBMSes,”
http://www.w3.org/2001/sw/Europe/reports/scalable_rdbm
s_mapping_report/
[14] Mena, E.; Kashyap, V.; Sheth, A. P. and Illarramendi,
A. “OBSERVER: An Approach for Query Processing in
Global Information Systems based on Interoperation across
Pre-existing Ontologies,” Conference on Cooperative
Information Systems, 1996, 14-25.
[15] Prud'hommeaux, E. and Seaborne, A. “SPARQL
Query Language for RDF,” (Working Draft) W3C, 2007
[16] Stuckenschmidt, H.; Wache, H.; Vogele, T. and
Visser, U. “Enabling technologies for interoperability,” In
Visser, U., and Pundt, H., eds., Workshop on the 14th
International Symposium of Computer Science for
Environmental Protection, Bonn, Germany: TZI,
University of Bremen, 2000, 35-46.
[17] Tamma, V. and Visser, P. “Integration of
Heterogeneous Sources: Towards a Framework for
comparing Techniques,” Proceedings of the AI*IA '98
Workshop on Techniques for Organisation and Intelligent
Access of Heterogeneous Information, 1998
[18] Wache, H. et al., (ed.) “Ontology-based integration of
information - a survey of existing approaches,” IJCAI--01
Workshop: Ontologies and Information Sharing, 2001,
108-117.
[19] Woelk, D. et al. “Using Carnot for Enterprise
Information Integration,” Second International Conf.
Parallel and Distributed Information Systems. January,
1993, 133-136.

